Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
ACS Applied Polymer Materials ; 2022.
Article in English | Scopus | ID: covidwho-2288840

ABSTRACT

To meet the growing demand for sustainable development and ecofriendliness, hydrogels based on biopolymers have attracted widespread attention for developing flexible pressure sensors. Natural globular proteins exhibit great potential for developing biobased pressure sensors owing to their advantages of high water solubility, easy gelation, biocompatibility, and low production cost. However, realizing globular protein hydrogel-based sensors with interfacial and bulk toughness for pressure sensing and use in wearable devices remains a challenge. This study focuses on developing a high-performance flexible pressure sensor based on a biobased protein hydrogel. Consequently, a flexible protein/polyacrylamide (PAM) hydrogel with a featured double-network (DN) structure linked covalently with hydrogen bonds was first synthesized via a one-pot method based on natural ovalbumin (OVA). The unique DN structure of the as-synthesized OVA/PAM hydrogel affords excellent mechanical performance, flexibility, and adhesion properties. The mechanical properties of the DN hydrogel were enhanced after further cross-linking with Fe3+ and treatment with glycerol. Subsequently, the flexible pressure sensor was constructed by sandwiching a microstructured OVA/PAM dielectric layer between two flexible silver nanowire electrodes. The obtained sensor exhibits a high sensitivity of 2.9 kPa-1 and a short response time of 18 ms, ensuring the ability to monitor physiological signals. Based on its excellent performance, the fabricated sensor was used for monitoring the signals obtained using practical applications such as wrist bending, finger knocking, stretching, international Morse code, and pressure distribution. Particularly, we implemented a contactless delivery system using the fabricated OVA-based pressure sensors linked to unmanned vehicles and global positioning systems, providing a solution for low-risk commodity distribution during Coronavirus disease 2019 (COVID-19). © 2023 American Chemical Society.

2.
Micromachines (Basel) ; 13(2)2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1648327

ABSTRACT

With the research and the development of graphene-based materials, new sensors based on graphene compound materials are of great significance to scientific research and the consumer market. However, in the past ten years, due to the requirements of sensor accuracy, reliability, and durability, the development of new graphene sensors still faces many challenges in the future. Due to the special structure of graphene, the obtained characteristics can meet the requirements of high-performance sensors. Therefore, graphene materials have been applied in many innovative sensor materials in recent years. This paper introduces the important role and specific examples of sensors based on graphene and its base materials in biomedicine, photoelectrochemistry, flexible pressure, and other fields in recent years, and it puts forward the difficulties encountered in the application of graphene materials in sensors. Finally, the development direction of graphene sensors has been prospected. For the past two years of the COVID-19 epidemic, the detection of the virus sensor has been investigated. These new graphene sensors can complete signal detection based on accuracy and reliability, which provides a reference for researchers to select and manufacture sensor materials.

SELECTION OF CITATIONS
SEARCH DETAIL